Retrieval of logically relevant 3D human motions by Adaptive Feature Selection with Graded Relevance Feedback
نویسندگان
چکیده
A system that can retrieve logically relevant 3D captured motions is useful in game and animation production. We presented a robust logical relevance metric based on the relative distances among the joints. Existing methods select a universal subset of features for all kinds of queries which may not well characterize the variations in different queries. To break through this limitation we proposed an Adaptive Feature Selection (AFS) method that abstracts the characteristics of the query by a Linear Regression Model, and different feature subsets can be selected according to the properties of the specific query. With a Graded Relevance Feedback (GRF) algorithm, we refined the feature subset that enhances the retrieval performance according to the graded relevance of the feedback samples. With an Ontology that predefines the logical relevance between motion classes in terms of graded relevance, the performance of the proposed AFS-GRF algorithm is evaluated and shown to outperform other class-specific feature selection and motion retrieval methods.
منابع مشابه
Dynamic Feature Space Selection in Relevance Feedback Using Support Vector Machines
The selection of relevant features plays a critical role in relevance feedback for content-based image retrieval. In this paper, we propose an approach for dynamically selecting the most relevant feature space in relevance feedback. During the feedback process, an SVM classifier is constructed in each feature space, and its generalization error is estimated. The feature space with the smallest ...
متن کاملMulti-Feature Integration with Relevance Feedback on 3D Model Similarity Retrieval
In this paper, we combine the use of Reduced Feature Vector Integration (RFI) and Distance Integration (DI) with Relevance Feedback (RF) on 3D model similarity retrieval. The RFI outperforms the individual FVs and gives high probability of providing relevant objects, other than the query itself, on the limited-size display window. Therefore, user may select the relevant object(s) just after the...
متن کاملSimultaneous Feature Selection and Classification for Relevance Feedback in Image Retrieval
-In image retrieval, relevance feedback uses information, obtained interactively from the user, to understand the user’s perceptions of a query image and to improve retrieval accuracy. We propose simultaneous relevant feature selection and classification using the samples provided by the user to improve retrieval accuracy. The classifier is defined by a separating hyperplane, while the sparse w...
متن کاملRelevance Feedback for Content-Based Image Retrieval Using Support Vector Machines and Feature Selection
A relevance feedback (RF) approach for content-based image retrieval (CBIR) is proposed, which is based on Support Vector Machines (SVMs) and uses a feature selection technique to reduce the dimensionality of the image feature space. Specifically, each image is described by a multidimensional vector combining color, texture and shape information. In each RF round, the positive and negative exam...
متن کاملAdaptive Pattern Discovery for Interactive Multimedia Retrieval
Relevance feedback has been an indispensable component for multimedia retrieval systems. In this paper, we present an adaptive pattern discovery method, which addresses relevance feedback by interactively discovering meaningful patterns of relevant objects. To facilitate pattern discovery, we first present a dynamic feature extraction method, which aims to alleviate the curse of dimensionality ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition Letters
دوره 33 شماره
صفحات -
تاریخ انتشار 2012